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ABSTRACT 

We prove t ha t  for any  real n u m b e r  0 < a < 1, there  exists  a cons tan t  

ca such  t ha t  the  probabil i ty of genera t ing  a finite group G wi th  

[d(G) + ca log log IGI log log log [GI] e lements  is at  least a .  

1. Introduct ion  

For any finite group G, let d(G) be the smallest cardinality of a generating set of 

G and let r  denote the number of ordered t-tuples ( g l , . . . ,  gt) of elements of 

G that generate G. The number Pa(t) -- r t gives the probability that  t 

randomly chosen elements of G generate G. 

The probability of generating G with d(G) elements can be very small. For 

example Pzm(1), the probability of generating with one element the cyclic group 

of order m, tends to 0 when the number of prime divisors of m tends to infinity. 

This give rise to the following question: given a real number 0 < c~ < 1, find 

an integer d~(G) such that  Pc(d~(G)) > c~. It was noticed by Kantor and 

Lubotzky [5] that the difference da (G) - d(G) can be arbitrarily large, even with 

the restriction d(G) = 2; in other words, there exists no function 5: N --+ N 

satisfying d~(G) <_ 5(d(G)) for any finite group G. However, a bound for d~(G) 
can be given in terms of the order of G; for example, it is easy to prove (see Pak 

[8], Theorem 1.1) that d~(G) <_ log IGI + 2 - log(1 - a) (here, and throughout 

the paper, all the logarithms are on base 2). The previous bound is quite weak. 
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Pak suggested that it can be improved proving the following conjecture: for each 

0 < ~ < 1, there exists a constant ca such that da(G) <_ cad(G)loglog [G I for 

any finite group G. 

In this paper we present evidence for this conjecture; we prove (Proposition 19) 

that there exists a constant ca such that for any finite group G, da(G) - d(G) 

ca log log IGI log log log IGI holds. A slightly stronger result can be proved, replac- 

ing log(G) by the length A(G) of a composition series of G. 

THEOREM 1: Given a real number 0 < a < 1, there exists a constant ca such 

that, for any finite group G, 

Pa([d(G) + Ca logA(a)log log A(G)]) _> a 

i f  )~(G) >_ 4; otherwise PG([d(G) + ca]) _> a. 

This is a consequence of a more general result. 

THEOREM 2: There is a constant c such that if  g(x) --~ c~ as x -~ ~ and 

= log log log x + 9(x) ) ,  then 

lim inf PG([d(G) + f(x)])  = 1. 
X " ~  OO G s , t  

M G ) _ < *  

This implies in particular that if x is large enough and 7 > c, then, when- 

ever A(G) < x, [d(G) + 7 log x log log x] randomly chosen elements of G almost 

certainly generate G. 

One could expect that Theorem 2 holds under the weaker hypothesis that 

f ( x )  tends to infinity as x tends to infinity. This is true ([8], Theorem 4.1) if G 

runs in the class of nilpotent groups, but it is not true in the general case; take 

Gn : (Alt(n)) ~!/s. Kantor and Lubotzky [5] proved that d(G~) = 2 for large n; 

however, for any real number 0 < a < 1 there is a universal constant ka such 

that  da(Gn) >_ k~n if n is large enough. Since )~(Gn) = n!/8 and logn! ~ n logn, 

we deduce that  a necessary condition for l imn-.~ Pan ([2+ f(~(Gn))])  = 1 is that  

asymptotically 
k logx 

f ( x )  >_ loglogx 

for a suitable constant k. Finally, note that with the restriction that G is soluble, 

l imx_~ infa s.t. :~(a)<_x Pa([d(G) + f(x)])  = 1 if l i m , _ ~  f ( x )  - logx = c~ (this 

is an easy consequence of Corollary 11). 

In section 4 we describe some applications of Theorem 2 to the case of permu- 

tation and linear groups. For example, we prove that if/3 > 1/2 and n is large 
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enough then [/3n] randomly chosen elements of a permutat ion group G of degree 

n almost certainly generate G. More precisely we have the following result. 

COROLLARY 3: Given two real numbers  a and/3  with 0 < a < 1 and/3  > 1/2 

there exists an integer fi such that  i f  G <_ Sym(n) and n > fi, then d~(G) ~ /3n. 

A similar result holds for linear groups. 

COROLLARY 4: Let  F be a field which has finite degree over its prime subfield. 

Given two real numbers  c~ and/3  with 0 < a < 1 and/3  > 3/2 there exists an 

integer fiF such that  i f  G is a completely  reducible subgroup o f  GL(n, F)  and 

n > fiF, then d~(G) <_/3n. 

2. Preliminary results 

If G is a finite group and N is a normal subgroup of G, we define PG,N (t) = 

PG( t ) /PG/N( t  ). This number is the probability that  a t-tuple generates G, given 

that  it generates G modulo N. In particular PG,G(t) = PG(t). The following 

lemma is an immediate consequence of this definition. 

LEMMA 5: Let  G be a finite group and let 1 = No < N1 < . . .  < N~ = G be a 

normal series o f  G of  length I. Then  

pG(t) = 1-I (t). 
1 < i < /  

Now we consider a normal series E: 1 = No < N1 < .-" < Nt = G such that  

each factor is soluble or a direct product of nonabelian simple groups. We define 

= I I  BC, (t) = 1-I 
i s . t .  i s . t .  

Ni/Ni - -1  N i /N i - -  1 
s o l u b l e  n o n s o l u b l e  

Clearly, P c ( t )  = .AG,E(t) " Bc ,~( t ) .  

LEMMA 6: Let  G be a finite group. I f  N is an abelian minimal  normal subgroup 

o f  G, then 

P a ,g ( t )  = 1 -- k / lN I  t 

where k = 0 i f  G does not split over N ,  k = [ N I ~  (with ON = 0 

or 1 according as N is trivial or not as a G-module)  otherwise. 

Proof: This formula is really Satz 2 of [4] with k being the number of comple- 

ments to N in G. But if this number is nonzero, it coincides with the number of 
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derivations of G / g  in g and by definition ]Der(G/N, N)] = ]Y] ~ [HI(G/N,  N)]. 

This completes the proof. | 

If  M is an irreducible G-module, then we define the numbers qM, rM and SM as 

follows: qM ----IEnda MI, q ~  = IMI, q~M = ]HI(G/CG(M),  M)]. Moreover, let 

~G(M) be the number of complemented factors G-isomorphic to M in a principal 

series of G; in [1] the authors proved that  this number is an invariant of the group 

G. 

In the following, to simplify our notation, whenever we write qA x we will mean 

that  the value of this power is 1 if x is positive. 

LEMMA 7: Let G be a finite group. I f  N is an abelian minimal normal subgroup 

of G and G splits on N,  then 

PC,N(t) = 1 - qN N(~ 

Proof'. In [1], Theorem (2.10), ]HI(G/N,N)]  = [HI(G/CG(N),N)]q~N a/N(N) is 

proved and, since 5a/N(N) = 5G(N) - 1, by Lemma 6 we deduce that  k = 
qrNNO N q~N N 6a(N)-I �9 " qN , that  is 

rN (ON--t)+sN +Sa (N)- 1 
PG,N(t) = 1 -- qN | 

Let M be an irreducible G-module isomorphic to a complemented factor in a 

principal series of G. Define 

Aa,M(t) = H (1 -- qMM(O'-t)+s'+J). 

O<j<_Sa(M)-I 

THEOREM 8: Let G be a finite group. Then Aa,~(t)  does not depend on the 

fixed series. In particular 

Aa,~(t)  = H Aa,M~(t), 
i<~<~(a) 

where M i , . . . , M ~ ( a ) ,  up to isomorphism, are the irreducible G-modules 

isomorphic to a complemented factor in a principal series of G. 

Proof'. We prove this theorem by induction on the order of G. Let E be a normal 

series 1 = No < N1 < . . .  < Nt = G such that  each factor is soluble or a direct 

product of nonabelian simple groups. Let X be a minimal normal subgroup of 

G contained in N1. If we consider E' ,  the normal series of G / X  defined by the 

subgroups X I V j X ,  we note that  

P G / x ( t ) = P G / x , N ~ / x ( t )  H PG/N,_x,N,/N,_~(t). 
2<i</ 
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Moreover, if we observe that 

Pa(t) = Pa,N1 (t) I-I PGIN,_,,N,/N,_, (t) 
2 ( i ( l  

and 

we can conclude that 

PG,N, (t) = PC/X,N,/x(t)" Pc,x(t) 

AG E(t) = { AG/x,E, (t) if X is nonabelian or noncomplemented in G, 
' AG/x,~, (t). Pa,x (t) otherwise. 

Moreover, in any ease by inductive hypothesis we have 

,4a/X,E'(t) ---- l-I AG/X,Mi(t), 
l<_i<_~(a/X) 

where M1, . . . ,  Mr up to isomorphism, are the irreducible G/X-modules 
isomorphic to a complemented factor in a principal series of G/X.  

We remark that if M is a G/X-module, then M can be considered as a G- 

module by setting m g = m Xt ifg belongs to the coset Xt. So {M1, . . . ,  M~(a/x)} 
can be viewed as a set of nonisomorphic G-modules. Moreover, if M is an irre- 

ducible G-module G-isomorphic to a complemented principal factor of G, then 

X centralizes M and hence M can be considered as a G/X-module. If G / X  
has a complemented principal factor G-isomorphic to M, then M ~ Mi with 

1 < i < ~(G/X); otherwise, X is abelian and complemented and M ---G X. 

We observe also that if M is G-isomorphic to a complemented principal factors 

of G, then the numbers qM, rM, SM only depend on the action of G/Ca(M),  so 

they do not change if we look at M as a module over G or over G/X.  
The possible cases are the following: 

(a) X is nonabelian or X is not complemented in G. In this case ~(G) = 

~(G/X) and {M1, . . . ,  M~(a/x)} is a set of representatives for the irreducible G- 

modules isomorphic to a complemented principal factor of G; for 1 < i < ~(G), 

we have 5a(Mi) = 5a/x(Mi) and so Aa/x,Mi(t ) = Aa,Mi(t). Thus 

= I I  = I I  
l<_i_<~(G/x) l_<i<~(c) 

(b) X is abelian and complemented in G and 5G/x(X) > 0. Also in this 

case ~ = ((G) = ~(G/X) and {M1, . . . ,M~(c /x )}  is a set of representatives 

for the irreducible G-modules isomorphic to a complemented principal factor 

of G; we may assume M~ = X. If i _< ~ - 1, then 5G(Mi) = 5G/x(Mi) and 
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AG/X,M~(t) = AG,M~(t). On the other hand, since X has a complement in G, 

6a(X) = 5a /x (X)  + 1 and, by Lemma 7, 

Pa,x(t)  = 1 - qx x(Ox-t)+sx+Sa(x)-I 

Therefore 

AG,M~ (t) = Aa,X (t) = rx (Ox-t)+sx +j) 
I] (1- qx 

O<_j<Sa(X)-I 

= 1-I ( 1 - q •  (Ox-t)+sx+j) 
o<_j<~c/x (x) 

= [  I ~  ( l-qxx(Ox-')+sx+J)](1-qxX(Ox-t)+sx+'a/x(X)) 

o<j<_aa/x (x) - i  

= AG/X,Mr (t)" Pa,x(t) .  

We can conclude that  

( A a / x , M , ( t ) ) ' P a , x ( t )  Aa,E(t) =Aa/x , z , ( t ) .  Pa,x(t)  = l I ! .  

:( n 
1_~i_<~-1 

1< 1 

AG,Mi (t)) �9 AG/X,M~ (t) " PG,X (t) 

AG,M,(t)) " AG,M,(t) ---- 1-I AG,Mi(t). 
l<i<~(a) 

(c) X is abelian and complemented in G and ~alX (X) = 0. Thus ~ = ~(G) = 

~(G/X)  + 1 and { M 1 , . . . , M ~ ( a / x ) , X }  is a set of representatives for the ir- 

reducible G-modules isomorphic to a complemented principal factor of G. If 

i < ~ - 1, then AG/X,M~(t ) = AG,M~(t). Since 5G(X) = 1, by Lemma 7, 

Aa,x( t )  = 1 - qx x(ox-O+sx = Pc,x(t) .  

Therefore 

Aa,~(t) = Aa/x,~ ' ( t )"  Pc,x(t)  = ( 1-I Aa/x,M~(t)) . Aa,x(t) ,  
l</<~(a/x) 

and this concludes our proof. | 

COROLLARY 9: Let G be a finite group. Then Aa,~.(t) and Ba,~,(t) do not 
depend on the fixed normal series E. 

Proof'. Since the probability Pa(t) = Aa,~(t) �9 ISe,~(t) is an invariant of the 

group G, the result follows by Theorem 8. | 
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Subsequently, we denote Aa,~ (t) and Bc,• (t) by Aa  (t) and Bc (t) respectively. 

Note that AC,M(t) > 0 if, and only if, t >_ hM, with 

[SG(M) + SM 
h M = O M A- ! -r-s li 

where Ix] denotes the smallest integer > x. Consequently, we remark that 

d(G) >_ hM. 

PROPOSITION 10: If G is a finite group and M is an irreducible G-module, then 

AO,M([d(G) + u]) _> 1 - 1/IM P. 

Proof'. By the previous remark d(G) > hM, thus 

AG,M([d(G ) + u]) > AG,M([hM -4- u]) ~ H (1 -- qrMM(OM--hM--U)q-SMq-J ). 

0<j<_Sa(M)--I 

But, by the definition of hM, it follows that rM(O M - - h M  - - U ) q - S M  

<_ --(JG(M) -- rMU, hence 

H (1 - q~M "(~ >__ H (1 -- qM rMu-Sa(M)+j) 
O~_j~Sc(M)-I O(_j~_Sa(M)-I 

>_ 1 -  E qM ~Mu-6a(M)+j >- 1--qM r€ E qMk 
O< j <SG( M)-- I I <k<SG( M) 

>--l--qMr~U E qMk >-I -qMrMu=I-1 / IM[  u, 
l<k<oo 

since q~4 M = I MI. 

COROLLARY 11: Let G be a finite group. Then 

Aa([d(G) + u]) >_ 1 - ( /2  u, 

where ~ denotes the number, up to isomorphism, of the irreducible G-modules 
isomorphic to a complemented factor in a principal series of G. 

Proof: Theorem 8 and Proposition 10 imply 

1 

1 
1 -  E [Mip----7 ~ 1-2--if, 

1<i<~ 
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since I Mi] _> 2 for every i = 1 , . . . ,  ~. | 

The previous corollary gives a bound for A(t).  Now our aim is to bound B(t). 

First  we need an auxiliary result. 

LEMMA 12: Let G be a finite group and let N be a normal  subgroup of G. Then 

PG,N(t) >_ PN(t -- d(G/N) ). 

Proof'. By definition, 

Pa N(t) = r 
' OG/N(t)INIt" 

Choose gl . . . .  ,g, such tha t  G = ( g l , . . . , g t ,  N); it was noticed by Gaschiitz [3] 

tha t  the cardinali ty of the set 

~gl . . . . .  gt = { ( h i , . . . , n t )  �9 Ntl(gln~,...,gtnt)----G} 

is independent of the choice of g l , . . .  ,gt, namely 

CG(t) 

In particular,  given r = d(G/N)  and fixed 9~,- . .  ,9~ such tha t  (g t , . . . ,  g~, N) 

= G, we consider 

~gl , . . . ,g r ,1  ..... 1" 

If  ( X r + l , . . . , x t )  = N,  then 

( Y l , . . - , Y r , X ~ + l , . . . , x t )  ~1291 ..... g,,l ..... 1 

for any Y l , . . . ,  Yr E N.  We conclude tha t  

Ca(t______~) >_ [NrCg(  t _  r) and PG,N(t) _> CN(t - - r )  
CG/N(t) INI t-r  

LEMMA 13: Let G be a finite group. If  u, v are positive integers and u >_ v, then 

Pc(u) _> 1 - (1 - PG(v)) [~/'l. 

Proof Let n = [u/v]. Since u >_ nv it is sufficient to prove tha t  

P6(nv) > 1 - (1 - PG(V)) n. 

Observe tha t  if a (nv)-tuple, say x l , . . . , x ~ , ,  does not generate G, then, in 

particular,  

(xl,. . . ,x~) # G, (z ,+ l , . . . ,x~)  r G, . . . ,  (x(~-l)v+l, . . . ,x~) # G. 
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Therefore,  

I{nongenerating (nv)-tuples}l _< I{nongenerating v-tuples}l n, 

and we conclude tha t  

1 - Pa(nv)  = I{n~ (nv)-tuples}l 
Ia l  nv 

< I{n~ v-tuples}ln ---- (1 - Pc(v) )  n. | 

- l a i t y  

To bound Ba(t) ,  we combine the two previous lemmas with a deep result on 

the probabil i ty of generating direct products  of simple groups, recently proved 

by Igor Pak. 

THEOREM 14 (Pak, [8, Prop.  7.1]p): There exists a constant 5 such that, i f  a 

finite group G is a direct product of  nonabelian simple groups and m is the 

maximal number of isomorphic copies of each group involved, then, for every 

integer t >_ 6 max{log m, 1}, 

Pa(t)  ~_ 1/e. 

In particular, 

Pa([Smax{ logm,  1}] + 1) k 1/e. 

COROLLARY 15: I f  a finite group G is a direct product of  nonabelian simple 

groups and m is the maximal  number of  isomorphic copies of  each group involved, 

then, for every integer u greater  than v = [5 max{logm,  1}] + 1, 

Pa(u) _> 1 - ~ u / v - 1 ,  

where y = 1 - 1/e and 5 is the constant defined in Theorem 14. 

Proo~ By Pak's  Theorem (14), Pa(v)  >_ l /e ,  so tha t  1 - Pa(v)  <_ 1 - 1/e 

= ~ < 1. Thus, by Lemma 13, we conclude tha t  

Pa(u) >_ 1 - (1 - Pa(v))  [u/~] >_ 1 - l~ u/v-1. | 

LEMMA 16: Let G be a finite group and let 1 = No < N1 < . . .  < Nl = G 

be a normal  series such that each factor N j / N j _ I  is either soluble or a direct 

product of  nonabelian simple groups, and in the latter case let m j  be the maximal 

number of  isomorphic copies of  each simple group involved. Set m =  max{mj  }, 

v = [6 max{logm,  1}] + 1 and ~ = 1 - 1/e. Then, for every integer u > v, we get 

Ba(d(G) + u) >_ 1 - s ~7 "1~-1, 
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where s is the number of nonsoluble factors in the series. 

Proof: Let Nj /Nj_ I  be a direct product of nonabelian simple groups. Set 

vj = [Smax{logmj, 1}] + 1. By definition, m > mj and v >_ v j .  

By Lemma 12 and Corollary 15, for every integer u >_ v we get 

PG/N~_I,N~/N~_I (d(G) + u) >_ PNj/N~_I (U) >_ 1 -- ~?u/vj-1. 

As v >_ vj and ~ < 1, it follows that 

PG/N~_I,Nj/Nj_~ (d(G) + U) >_ 1 -  ~1 u/v-1. 

Since this holds for every nonsoluble factor Nj /Nj_  1 of the series defined above, 

by the definition of BG we conclude that 

Ba(d(V) + u) = 1-I PG/N~_~,N~/N~_, (d(V) + u) 
j s . t .  

Nj/Nj--1 
n o n s o l u b l e  

_> (1 - ~ , / v - 1 ) ~  _> 1 - 8?7 u / v - 1 ,  m 

3. T h e  m a i n  resu l t  

To prove Theorem 1 and Theorem 2 we will apply Corollary 11 and Lemma 

16. The bound for BG(t) given by Lemma 16 depends on the normal series of 

G which is chosen. For our aim it is useful to consider the normal series of G 

described in the following lemma. 

PROPOSITION 17: Let G be a finite group. We define recursively the normal 
series 

I = Yo <_XI < YI <_X2 < Y2 < . . .  <_Xs < Ys <_X~+I = G  

by setting Yo = 1 and 

X i /Y i -1  =R(G/Y~-I)  

Y~/X~ = s o c ( G / x d  

(soluble radical of G / Y i -  1 ) 

(socle of C / X d .  

Then, Y i /Xi  is a direct product of li nonabe//an simple groups, where 

li+l ~_ Ii/2 

for i = 1 , . . . ,  s -- 1. In particular 11 >_ li, for every i, and 

s _< log/1 + 1. 



Vol. 132, 2002 E L E M E N T S  G E N E R A T I N G  A F I N I T E  G R O U P  39 

Proof: As the series is defined recursively, it is sufficient to prove that  12 _< ll/2. 
By definition, X1 is the soluble radical of G, so that Y = Y1/X1 is a direct 

p r o d u c t  of ll nonabelian simple groups, say $ 1 , . . . ,  Sll. 

Now, G = G/X1 acts by conjugation on the ll subgroups S~ and the kernel 

of this action is N N/X1 l~ = = [']i=1 N-~(Si). Thus, GIN is isomorphic to a 

subgroup of Sym(/1). 

Moreover, N acts by conjugation on the elements of Y1, fixing every subgroup 

Si. As Yt  = soc(G) and Z(Y1) = 1, it follows that N is isomorphic to a 
ll subgroup of [L=I  Aut(Si).  In particular, N/Y1 is isomorphic to a subgroup of 

11 1-I~=l O u t ( ~ )  and thus it is soluble, since each S~ is a nonabelian simple group. 

By the definition of X2 it follows that N _< X2, so that Y2/X2 is isomorphic to a 

section of G/N and hence to a section, say Y/X,  of Sym(/1). As Y/X  ~- Y2/X2 = 
soc(G/X2), we can write Y/X  as a direct product of 12 nonabelian simple groups, 

say 

Y / X  = S ~ / X  • . . .  • & ~ / X .  

Let P be a Sylow 2-subgroup of Y < Sym(/1). Since d(P) < l~, IPobl = 

IP/P'I < 2 h. Thus 

I(PX/X)abl = [PX/P'X[ : [P/P'(Pn X)I < IP/P'l <_ f~. 

On the other hand, P X / X  is a direct product of some Sylow 2-subgroups Pi/X 
of SJX ,  for i = 1 , . . . ,  12. Since nonabelian simple groups have noncyclic Sylow 

2-subgroups, we get [(PJX)abl _> 2 2. Therefore, 

12 

I(PX/X)ab, = 1--[ I(P~/X)ob] >_ 2 2~, 
i = l  

so that  2 21~ _< 2/1 , and we conclude that 12 _4 ll/2. ! 

Now we can give the proof of Theorem 2. 

Proof of Theorem 2: Let ~ -- 1 - 1/e and let 5 be the constant defined in 

Theorem 14. We set a = - l o g y  > 0 and define 

c = (5 + 1 ) / .  > 0. 

Let f be a function such that 

j(x) 
- -  - c l o g  l o g  x = ~ .  
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Since, by definition, Pc(u) = Aa(u). 13o(u) for every integer u, it is sufficient to 

prove tha t  

(a) lim inf 
X - ~ O O  G s . t .  

~ ( o ) _ < ~  

and 

AG([d(G) + f (x) ] )  = 1 

(b) l im inf 
X--+OO G s . t .  

~ ( G ) _ < ~  

BG([d(G) + f (x ) ] )  = 1. 

(a) By  Corol lary 11, 

AG([d(G) + f (x) ] )  _> 1 - ~/2 f(x), 

inf 
~(G)<_z 

where ~ denotes the number ,  up to isomorphism,  of the irreducible G-modules  

isomorphic to a complemented  factor in a principal  series of G. As ~ < A(G) _< x 

we get t ha t  

Aa([d(V) + f (x ) ] )  > 1 x _ 2f(~ ~ - 1 - 2 -(f(x)-l~ 

Now, 

l im f ( x ) -  l ogx  = l im logx(f(x) -1)  
x-~oo x - ~  log x 

> l im logx( f(x)" " - c l o g l o g x -  1) = c~, 
- x - ~  " l o g  x 

and therefore 

lim inf fl, c ( [ d ( G ) + f ( x ) ] ) = l - 2  - ~ - - 1 .  
X-'-~OO G s . t .  

(b) Clearly, l i m z - ~  f(x)/logx = c~, so there exists a real number  ~ such tha t  

[f(x)]  _> (5 + 1) logx  for every x _> ~. 

Let  us fix a a  integer x _> 5 and a group G such tha t  A(G) < x: We consider the 

series of G defined in Proposi t ion  17. This  series has s nonsoluble factors, and 

each of t h e m  is a direct product  of at  most  11 nonabel ian simple groups. Clearly, 

ll _< A(G) <_ x. Moreover,  by Proposi t ion 17, s < logA(G) + 1 _ logx  + 1. 

Now, let v = [S max{log /1, 1}] + 1. As 11 _< x and we can assume logx  _> 1, 

v < [5 max{ logx ,  1}] + 1 < 51ogx + 1 < (5 + 1 ) logx .  

In part icular ,  since x _> ~, we have [f(x)]  > v and,  by L e m m a  16, it follows tha t  

BG([d(G) + f (x) ] )  >_ 1 - S~ ['f(x}]/v-1. 
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Note that ,  since v <_ (5 + 1) logx,  

[f(x)] > if(x)] 
v - ( 5 + l ) l o g x  

f ( x )  - 1 f ( x )  
>- ( 5 + l )  logx  -> ( 5 + l ) l o g x  

so tha t  
@f(x)]/v-1 ~_ rlf(x)/(5+l ) Iogx--2 .  

Thus, for a = - log~ > 0 and c = (5 + 1)/a, since s _< logx  + 1 we get 

f ( x )  - - 2  
13a([d(G) + f (x)] )  _> 1 - ( logx + 1) ~(e+~)~og~ 

(~) 
= 1 - r / -2( logx + 1) 2 - a ( ~  ) 

1 f(x) = 1 - ?'/-2(21~176 -t- 1) 2 -~  ogr~ 

1 f(x) = 1 - r / - 2 ( 2 - ~ ( ~  - c l ~ 1 7 6  -t- 2 - ;  og~7, ). 

Since this holds for every real number  x _> ~ and for every group G such tha t  

A(G) < x, we conclude tha t  

lira inf 
X " @ O O  O s , t .  

f(~) (!(~)-~log og~) 2-~ ~o-~) Ba(d(a)  + f (x) )  > lim 1 - V-z(2 -~  ,o*~ + 

= 1 - r/-2(2 -~176 + 2 -~176 = 1. | 

Theorem 1 is a consequence of Theorem 2. 

Proof of Theorem 1: Let c be the constant  defined in Theorem 2 and let g(x) be 

the function defined as g(x) = log x log log x if x _> 4, g(x) = 1 otherwise. Since 

lim (c + 1)g(x) c l o g l o g x  = lira l og logx  = ~z, 
x-~oo log x x-~oo 

Theorem 2 implies tha t  

lim inf 
X - - ~ O O  G s , t .  

MG)_<~ 

PG([d(G) + (c + 1)g(x)]) - 1. 

Thus there exists a positive number  xa such tha t  

inf Pc([d(G) + (c + 1)g(x)]) > a ,  for every x > x~. 
G s . t .  - -  - -  

In particular,  for any group G such tha t  A(G) _> x~ we have 

PG([d(a) + (c + 1)g(A(a))]) _> 
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and also for any group G such tha t  A(G) < xo we have 

PG([d(G) + (c + 1)g(xa)])  >_ ~. 

Therefore,  for ca = (c + 1)g(xa)  we obtain  tha t  

> ~ Pc([d(G) + (c + 1)g(A(G))]) > c, 
PG([d(G) + eag(A(e))]) 

- [ PG([d(G) + (c + 1)g(xa)]) _> a 

since g and Pc; are nondecreasing functions. II 

if A(G) _> xa ,  
if A(G) _< xa,  

COROLLARY 18: There is a constant k such that 

(1) l i m , + c c i n f  c, .... Pc([d(a) + klogxloglogx]) = 1, 
log IGI_<z 

(2) l i m x - ~  info  .... Pc([d(a) + k loglog IGI log log log IGI]) = 1. 
I G I = ~  

Proof: (1) Let  c be the constant  defined in Theorem 2. We set k = c + 1 and 

f ( x )  = k log x loglog x. Since A(G) _< log IGI, clearly 

{ G l l o g ] G I  _ x} c_ { G I A ( G )  _~ x}. 

Thus  

inf PG([d(G) +/ (x ) ] )  > inf 
G s . t .  - -  G s . t .  

log IC..l<_, . M G ) < x  

and hence by Theorem 2 we conclude tha t  

PG([d(V) ~-/(x)]), 

lim inf Pc([d(G) + f (x ) ] )  _> lim (inf t 
X--@(:X) G s . t .  X--~(:X) 9 . . 

Io$ IGl<_z XfG)<_x 

Pc([d(G) + f (x ) ] )  = 1. 

(2) Since (G l log Ial = x} ~ {a  I log lal <_ x}, we have 

l im inf Pc([d(G) + f ( log  IGI)]) = lira inf 
~ - - + 0 0  G 8 . t .  J~---~O~ (3 s . t .  

I G l = x  log I G I = *  

> lira inf 
X ---I" ~ G s . t .  

log I G l ~ z  

Pc([d(C) + f ( x ) ] )  

PG([d(G) + f (x) ] )  = 1. 

PROPOSITION 19: Let h ( x ) be a function defined as h( x ) = log log x.  log log log x 

if x > 16, h(x) = 1 otherwise. For any real number 0 < a < 1, there exists a 

constant Oa such that PG([d(G) + Ooh(lG])]) >_ a for any finite group G. 

Proof'. This follows the same lines as the proof  of Theorem 1, applying 

Corol lary 18 instead of Theorem 2. II 
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4. P e r m u t a t i o n  a n d  l inear  g r o u p s  

If G is a permutation or a linear group, we are able to bound d~(G) with a 

function depending on the degree of G. 

If G is a permutation group of degree n, then the length of a maximal chain 

in the subgroup lattice of G is at most 3n/2 (see [2]) and this of course implies 

A(G) _< 3n/2; so from Theorem 2, one can immediately deduce the following 

corollary. 

COROLLARY 20: There is a constant ct such that, i f  g(x) -+ oc as x -+ oc and 

f ( x )  = logx(cl loglogx § g(x)), then 

lira inf Pa([d(G) § f(n)])  = 1. 
n - + o o  G_~Sym(n)  

Also in this case, the previous result does not remain true if we replace 

log X(Cl log log x §  (x)) by any function f (x) which tends to infinity as x tends to 

infinity. As we noticed in the introduction, if n is large enough, 

Gn = (Alt(n)) n!/s can be generated by 2 elements and can he viewed as a 

permutation group of degree n .  n!/8, but l i m n - ~  PaN ([2 + v ~ )  = 0 [5]. 

If G _< Sym(n) and n r 3, then d(G) <_ n /2  (see [2]); so if/~ is a real number 

with/3 > 1/2, then 

lim fin - d(G) Ca log log n = ~ .  
n - ~  log n 

Therefore we have the following result. 

COROLLARY 21: I[/~ > 1/2 then 

lim inf PG([/3n]) = 1. 
n --~ a~ G_~Sym(n)  

Similar arguments can be applied for completely reducible linear groups. 

Namely, if F is a field which has finite degree over its prime subfield and G 

is a finite completely reducible subgroup of GL(n, F) ,  then )~(G) _< cFn for a 

constant cF ([7] Theorem C) and d(G) < 3n/2 (see [6]). So we have the following 

corollaries. 

COROLLARY 22: Let F be a field which has finite degree over its prime 

subfield and let Xn be the set of the finite completely reducible subgroups 

of  GL(n, F). There is a constant c2 such that, i f  g(x) --~ oo as x -~ oo and 

I (x)  = log x(c2 log log x + then 

lira inf Pc([d(G) + f(n)])  = 1. 
n - ~ . ~  G E X,, 
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COROLLARY 23: Let F be a field which has finite degree over its prime subfield 

and let Xn be the set of the finite completely reducible subgroups of GL(n,  F ) .  

If/3 > 3/2  then 

l im inf P c  ([~n]) = 1. 
n--4~ GE Xn 
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