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ABSTRACT

We prove that for any real number 0 < a < 1, there exists a constant
cq such that the probability of generating a finite group G with
[d(G) + ca loglog |G|log loglog |G|] elements is at least a.

1. Introduction

For any finite group G, let d(G) be the smallest cardinality of a generating set of
G and let ¢¢(t) denote the number of ordered t-tuples (g1, ..., g:) of elements of
G that generate G. The number Pg(t) = ¢g(t)/|G|t gives the probability that ¢
randomly chosen elements of G generate G.

The probability of generating G with d(G) elements can be very small. For
example Pz_ (1), the probability of generating with one element the cyclic group
of order m, tends to 0 when the number of prime divisors of m tends to infinity.
This give rise to the following question: given a real number 0 < a < 1, find
an integer dq(G) such that Pg(da(G)) > . It was noticed by Kantor and
Lubotzky [5] that the difference d(G) — d(G) can be arbitrarily large, even with
the restriction d(G) = 2; in other words, there exists no function §: N — N
satisfying d,(G) < 0(d(G)) for any finite group G. However, a bound for d,(G)
can be given in terms of the order of G; for example, it is easy to prove (see Pak
[8], Theorem 1.1) that d,(G) < log|G| + 2 — log(1 — @) (here, and throughout
the paper, all the logarithms are on base 2). The previous bound is quite weak.
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Pak suggested that it can be improved proving the following conjecture: for each
0 < a < 1, there exists a constant ¢, such that d,(G) < cod(G)loglog |G| for
any finite group G.

In this paper we present evidence for this conjecture; we prove (Proposition 19)
that there exists a constant ¢, such that for any finite group G, do(G) — d(G) <
ca loglog |G| logloglog |G| holds. A slightly stronger result can be proved, replac-
ing log(G) by the length A(G) of a composition series of G.

THEOREM 1: Given a real number 0 < a < 1, there exists a constant c, such
that, for any finite group G,

P ([d(G) + co log M(G) loglog A(G))]) > a

if M(G) > 4; otherwise Pg([d(G) + ca]) > a.
This is a consequence of a more general result.

THEOREM 2: There is a constant ¢ such that if g(z) — oo as x — oo and
f(z) =logz(cloglogx + g(z)), then
lim inf Po(ld(G)+ f@)]) =1

=00
MG <

This implies in particular that if x is large enough and v > ¢, then, when-
ever A\(G) < z, [d(G) + ylog zloglog z] randomly chosen elements of G almost
certainly generate G.

One could expect that Theorem 2 holds under the weaker hypothesis that
f(z) tends to infinity as z tends to infinity. This is true ([8], Theorem 4.1) if G
runs in the class of nilpotent groups, but it is not true in the general case; take
Gn = (Alt(n))™/3. Kantor and Lubotzky [5] proved that d(G,) = 2 for large n;
however, for any real number 0 < a < 1 there is a universal constant k, such
that do(G,) > kon if n is large enough. Since A(G,) = n!/8 and logn! ~ nlogn,
we deduce that a necessary condition for im, ;e Pa, ([2+ f(AM(Gr))]) = 1 is that

asymptotically

logz

>k
f(@) 2 loglog

for a suitable constant k. Finally, note that with the restriction that G is soluble,
limy00 06 5.4, A(@)50 Pe(d(G) + F(@)]) = 1 if limgyo f(2) ~ log = oo (this
is an easy consequence of Corollary 11).

In section 4 we describe some applications of Theorem 2 to the case of permu-
tation and linear groups. For example, we prove that if § > 1/2 and n is large
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enough then [3n] randomly chosen elements of a permutation group G of degree
n almost certainly generate G. More precisely we have the following result.

COROLLARY 3: Given two real numbers o and 8 with 0 < o < 1 and 8 > 1/2
there exists an integer 7t such that if G < Sym(n) and n > 71, then d,(G) < fn.

A similar result holds for linear groups.

COROLLARY 4: Let F be a field which has finite degree over its prime subfield.
Given two real numbers o and 8 with 0 < o < 1 and 8 > 3/2 there exists an
integer nip such that if G is a completely reducible subgroup of GL(n, F) and
n > g, then do(G) < fBn.

2. Preliminary results

If G is a finite group and N is a normal subgroup of G, we define Pg n(t) =
Pg(t)/Pe/n(t). This number is the probability that a ¢-tuple generates G, given
that it generates G modulo N. In particular Pg g(t} = Pg(t). The following
lemma is an immediate consequence of this definition.

LEMMA 5: Let G be a finite group and let 1 = Ny < Ny < --- < N; =G be a
normal series of G of length I. Then

PG(t) = H PG/Ni_l,Ni/Ni_l (t)
1<i<i
Now we consider a normal series ¥: 1 = Ny < Ny < --- < N; = G such that
each factor is soluble or a direct product of nonabelian simple groups. We define

Acs® = [l Pomvcivgn®, Bas®)= T[] Posneingmve,(t).

i 8.t. i s8.t.
Ni/Ni_1 Ni/Ni—y
soluble nonsoluble

Clearly, Pg(t) = Ag x(t) - Be x(t).

LEMMA 6: Let G be a finite group. If N is an abelian minimal normal subgroup
of G, then

Pen(t)=1-k/|N|*
where k = 0 if G does not split over N, k = |N|?¥|HY(G/N, N)| (with O = 0
or 1 according as N is trivial or not as a G-module) otherwise.

Proof: This formula is really Satz 2 of [4] with k being the number of comple-
ments to N in G. But if this number is nonzero, it coincides with the number of
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derivations of G/N in N and by definition | Der(G/N, N)| = |N|®¥|H(G/N, N)|.
This completes the proof. |

If M is an irreducible G-module, then we define the numbers gps, 7pr and sp; as
follows: gy = |Endg M|, ¢4 = M|, ¢3¥ = |[HYG/Ca(M), M)|. Moreover, let
dc (M) be the number of complemented factors G-isomorphic to M in a principal
series of G; in [1] the authors proved that this number is an invariant of the group
G.

In the following, to simplify our notation, whenever we write ¢4* we will mean
that the value of this power is 1 if x is positive.

LEMMA 7: Let G be a finite group. If N is an abelian minimal normal subgroup
of G and G splits on N, then

PG,N(t) -1- q;”VN(oN—t)+3N+6G(N)—1.

Proof: TIn [1], Theorem (2.10), |HY(G/N, N)| = |H'(G/Cq(N), N)|go¢/*™ is
proved and, since dg/n(N) = dg(N) — 1, by Lemma 6 we deduce that & =

o gy g™, that is

PG,N(t) -1— q;'VN(oN—t)‘FSN““SG(N)_l- 1

Let M be an irreducible G-module isomorphic to a complemented factor in a
principal series of G. Define
Aeu®)= [ @-gpOitem),
0<j<éa(M)-1
THEOREM 8: Let G be a finite group. Then Ag x(t) does not depend on the
fixed series. In particular

Acst)= [ Aem(d),
1<i<4(G)
where My,..., Mgy, up to isomorphism, are the irreducible G-modules
isomorphic to a complemented factor in a principal series of G.

Proof: 'We prove this theorem by induction on the order of G. Let ¥ be a normal
series 1 = Np < Ny < -+ < N; = G such that each factor is soluble or a direct
product of nonabelian simple groups. Let X be a minimal normal subgroup of
G contained in N;. If we consider ¥, the normal series of G/X defined by the
subgroups X N;/X, we note that

Payx(t) = Payx.n/x(®) T Posvicavimii (B)-
2<i<!
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Moreover, if we observe that

Pa(t)=Pan @) [] Posneonimi,(t)
2<i<li

and
Pg N, (t) = Pgyx,n, /x(t) - Pa,x(t)
we can conclude that

A = Agyx,s (t) if X is nonabelian or noncomplemented in G,
cx(t) = AG/X,E/(t) . PG,X(t) otherwise.

Moreover, in any case by inductive hypothesis we have

Agxz® = [T Aexm(®),
1<i<g(G/ X)

where My, ..., Mg x), up to isomorphism, are the irreducible G/X-modules
isomorphic to a complemented factor in a principal series of G/X.

We remark that if M is a G/X-module, then M can be considered as a G-
module by setting m9 = mX* if g belongs to the coset Xt. So {Mj, ..., Mecrx)}
can be viewed as a set of nonisomorphic G-modules. Moreover, if M is an irre-
ducible G-module G-isomorphic to a complemented principal factor of G, then
X centralizes M and hence M can be considered as a G/X-module. If G/X
has a complemented principal factor G-isomorphic to M, then M = M; with
1 < i < £(G/X); otherwise, X is abelian and complemented and M =g X.

We observe also that if M is G-isomorphic to a complemented principal factors
of G, then the numbers gar, 7ar, spr only depend on the action of G/Cg (M), so
they do not change if we look at M as a module over G or over G/X.

The possible cases are the following:

(a) X is nonabelian or X is not complemented in G. In this case £(G) =
§(G/X) and {M;, ..., M¢a/x)} is a set of representatives for the irreducible G-
modules isomorphic to a complemented principal factor of G; for 1 < i < £(G),
we have dq(M;) = dg/x(M;) and so Ag)x M, (t) = Ag,m;(t). Thus

Ags(t) = Ag/x, o (t) = H Ag/x,m(t) = H Ag,m,(t).
1<iLg(G/ X) 1<i<E(G)

(b) X is abelian and complemented in G and dg/x(X) > 0. Also in this
case £ = £(G) = &§(G/X) and {M,,..., M; (g x)} is a set of representatives
for the irreducible G-modules isomorphic to a complemented principal factor
of G; we may assume Mg = X. If i < £ — 1, then dg(M;) = dg/x(M;) and
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Agyx,m;(t) = Ag m;(t). On the other hand, since X has a complement in G,
0c(X) = bg/x(X) +1 and, by Lemma 7,

Pox(t)=1- q;(x(ex—t)+8x+5c(x)—1‘

Therefore

A M, (t) = Ag x(t) = H (1- q;(x (9x—t)+sx+j)
0<§<éa(X)-1

— H (1- q;x(Bx —t)+sx +j)
0<j<bg/x (X}

— [ H (1 _ qTXx(gx—t)+8x+j):| (1 _ q;‘(x(ex—t)+3x+éc/x(x))
0<j<8g/x (X)-1
= AG/X,Mg (t) - Pe x(t).
We can conclude that
Ag,x(t) =Ag/x,5 (t) - Pa,x (t ( IT Ac/x.m(t ) Pe x(t)

1<i<€

( IT 4camt )AG/XME(t) Pg x(t)

1<i<E~1
(I Aem®)-Aom= T Acm)
1<i<E-1 1<i<€(G)

(¢) X is abelian and complemented in G and ¢, x (X) = 0. Thus £ = £(G) =
£(G/X)+1 and {My,..., Mg x), X} is a set of representatives for the ir-
reducible G-modules isomorphic to a complemented principal factor of G. If
i <& —1, then Ag/x um,(t) = Ag,m,(t). Since 6g(X) =1, by Lemma 7,

AG,X(t) =1- q;(x(ﬁx—t)-mx — PG,X(t)-

Therefore
Ags(t) = Ag/x, o (t) - Po,x(t) = ( H Ag/x,m; (t)> -Ag x(t),
1<i<E(G/ X)
and this concludes our proof. |

COROLLARY 9: Let G be a finite group. Then Ag s(t) and Bg x(t) do not
depend on the fixed normal series ¥.

Proof:  Since the probability Pg(t) = Ag s(t) - Bg x(t) is an invariant of the
group G, the result follows by Theorem 8. |
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Subsequently, we denote A¢g x(t) and Bg = (t) by Aq(t) and Bg(t) respectively.
Note that Ag am(t) > 0 if, and only if, £ > hjpy, with

éc(M) + SM'}

ha =0 + | -

where [z] denotes the smallest integer > x. Consequently, we remark that

d(G) > hu.

ProposITION 10: If G is a finite group and M is an irreducible G-module, then
Agm([dG) +u]) 21 -1/|M[*.

Proof: By the previous remark d(G) > hys, thus

Aem(d@) +u)) > Aem(h+ul) 2 [ (01— gpyrOuhumtondy,
0<j<da(M)-1

But, by the definition of hps, it follows that rp(6pr — Ay — u) + sum
< —6¢(M) — rpu, hence

H (1 _ qrMM(eM—hM—u)+sM+j) > H (1 . q;/[rMu—dc(M)+j)

0<j<8a (M)~1 0<j<ba(M)-1
>1- Z q;/[rMu—éc(M)-i—j >1 - q;/IrMu Z (I]T,[k
0<j<dc (M)—1 1<k<d6(M)
21-gy™ Y Gf > 1-gyMt=1-1/|M[",
1<k<o0
since ¢}y = |[M|. |

COROLLARY 11: Let G be a finite group. Then
Ac([d(G) +u]) 21 -¢/2%,

where £ denotes the number, up to isomorphism, of the irreducible G-modules
isomorphic to a complemented factor in a principal series of G.

Proof: Theorem 8 and Proposition 10 imply

Ac(@@ +u) = [ Aow (@@ +u)> [T (1- )

. . | M|
1<i<e 1<i<e

1 §

1<i<g
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since |M;| > 2 for every i = 1,...,&. ]

The previous corollary gives a bound for .A(t). Now our aim is to bound B(t).
First we need an auxiliary result.

LEMMA 12: Let G be a finite group and let N be a normal subgroup of G. Then

Pon(t) > P(t - d(G/N)).
Proof: By definition,
dc(t)
b n(BINTE
Choose g1,. .-, g such that G = (gy,...,g;, N); it was noticed by Gaschiitz [3]
that the cardinality of the set

PG,N (t) =

Qgr g = {(n1,...,ne) € N* | {ana, ..., gene) = G}

is independent of the choice of g;,..., g;, namely
PG (t)
1€2,....0 = ~
g1 gtl ¢G/N(t)

In particular, given r = d(G/N) and fixed g1,..., g, such that (g1,...,g,, N)
= G, we consider

le,-»-»gml ~~~~~ 1-

If (xpy1,..., %) = N, then

(Y1 s Urr Trgy -+, Ty) € Qgy vl

for any y1,...,¥r € N. We conclude that

o (t)
dan(t)

> |N|"¢n(t—7) and PG,N(t)z%;Q'

LeEMMA 13: Let G be a finite group. If u,v are positive integers and u > v, then
Po(u) 2 1- (1 - Pa(u)l")

Proof: Let n = [u/v]. Since u > nv it is sufficient to prove that
Pg(nv) > 1- (1 - Pg(v))™

Observe that if a (nv)-tuple, say z,,...,Zny, does not generate G, then, in
particular,

(.’El,...,l‘u) f,éG, (.’L‘U+1,...,JS2U> #G, caey <{E(n_1)v+1,...,l‘nv> #G
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Therefore,
|[{nongenerating (nv)-tuples}| < |{nongenerating v-tuples}|”,

and we conclude that

| = Po(nv) = |{nongenerat|icr;1|g; v(m))-tuples}|

nongenerating v-tuples}|™ n
cHoongenertag vosplesll — - el

To bound Bg(t), we combine the two previous lemmas with a deep result on
the probability of generating direct products of simple groups, recently proved
by Igor Pak.

THEOREM 14 (Pak, [8, Prop. 7.1]p): There exists a constant § such that, if a
finite group G is a direct product of nonabelian simple groups and m is the
maximal number of isomorphic copies of each group involved, then, for every
integer t > § max{logm, 1},
Pg(t) > 1/e.
In particular,
Ps([d max{logm,1}] + 1) > 1/e.

COROLLARY 15: If a finite group G is a direct product of nonabelian simple
groups and m is the maximal number of isomorphic copies of each group involved,
then, for every integer u greater than v = [§ max{logm,1}] + 1,

Pg(u) >1- T,u/v—l’
where n =1 — 1/e and § is the constant defined in Theorem 14.

Proof: By Pak’s Theorem (14), Pg{v) > 1/e, so that 1 — Pg(v) < 1 - 1/e
=1 < 1. Thus, by Lemma 13, we conclude that

Pg(u) > 1~ (1 — Pg(v)l#/vl > 1 — g/v-1, '

LEMMA 16: Let G be a finite group and let 1 = Ng < Ny < --- < Ny =G
be a normal series such that each factor N;/N;_, is either soluble or a direct
product of nonabelian simple groups, and in the latter case let m; be the maximal
number of isomorphic copies of each simple group involved. Set m= max{m;},
v = [dmax{logm,1}]+ 1 and n = 1 — 1/e. Then, for every integer u > v, we get

Ba(d(G) +u) > 1—s g/v7L
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where s is the number of nonsoluble factors in the series.

Proof: Let Nj/N;_; be a direct product of nonabelian simple groups. Set
v; = [6 max{logm;,1}] + 1. By definition, m > m; and v > v;.
By Lemma 12 and Corollary 15, for every integer u > v we get

PG/Nj_l,Nj/Nj_l(d(G) + u) Z PNj/Nj—l(u) Z 1-— nu/vjﬁl‘
As v > v; and 5 < 1, it follows that
PN,y vy N, (d(G) +u) > 1 — /71

Since this holds for every nonsoluble factor N;/N;_; of the series defined above,
by the definition of B¢ we conclude that

Bg(d(G) +u) = H PN,y N N; -, (A(G) + 1)
Nj]/;;'_1
nonsoluble

> (1 _ 77u/v-l)sx >1-— Snu/v‘l. [

3. The main result

To prove Theorem 1 and Theorem 2 we will apply Corollary 11 and Lemma
16. The bound for Bg(t) given by Lemma 16 depends on the normal series of
G which is chosen. For our aim it is useful to consider the normal series of G
described in the following lemma.

ProposITION 17: Let G be a finite group. We define recursively the normal
series
1=Y<X1 << X<V < <X <Y, S X =G

by setting Yy = 1 and

X:/Yi_1 =R(G/Yi_1) (soluble radical of G/Y;_1)
Yi/X; =soc(G/X;) (socle of G/X;).

Then, Y;/X; is a direct product of I; nonabelian simple groups, where
liv1 <L/2
fori=1,...,s—1. In particular l; > [;, for every i, and

s<logli +1.
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Proof:  As the series is defined recursively, it is sufficient to prove that lo <1;/2.
By definition, X; is the soluble radical of G, so that Y = Y7/X; is a direct
product of /; nonabelian simple groups, say Sy, ...,S),.

Now, G = G/X, acts by conjugation on the I; subgroups S; and the kernel
of this action is N = N/X; = ()., N(S;). Thus, G/N is isomorphic to a
subgroup of Sym(l,).

Moreover, N acts by conjugation on the elements of Y, fixing every subgroup
S;. As Y; = soc(G) and Z(Y;) = 1, it follows that N is isomorphic to a
subgroup of Hﬁlzl Aut(S;). In particular, N/Y; is isomorphic to a subgroup of
H L Out(S;) and thus it is soluble, since each S; is a nonabelian simple group.
By the definition of X3 it follows that N < X5, so that Y5/ X5 is isomorphic to a
section of G/N and hence to a section, say Y/ X, of Sym(l1). AsY/X ~Y,/X, =
soc(G/X5), we can write Y/X as a direct product of /3 nonabelian simple groups,
say

Y/X=5/Xx%x---x8,/X.
Let P be a Sylow 2-subgroup of Y < Sym(l;). Since d(P) < I;, |Pu| =
|P/P'| < 24. Thus
(PX/X)a| = |PX/P'X|=|P/P'(PNX)| < |P/P'| < 2",

On the other hand, PX/X is a direct product of some Sylow 2-subgroups P;/ X
of S;/X, for i =1,...,l3. Since nonabelian simple groups have noncyclic Sylow
2-subgroups, we get |(P;/X)qs| > 22. Therefore,

l2
(PX/X)abl = [[ 1P/ X )] > 22,
=1
so that 222 < 21, and we conclude that I3 <1;/2. ]

Now we can give the proof of Theorem 2.

Proof of Theorem 2: Let n = 1 — 1/e and let é be the constant defined in
Theorem 14. We set a = —logn > 0 and define

c=(0+1)/a>0.

Let f be a function such that

AC)

z—oo logx

—cloglogz =
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Since, by definition, Pg(u) = Ag(u) - Bg(u) for every integer u, it is sufficient to
prove that

(a) Jim - inf - Ag([d(G) + f(2)]) = 1
A(G)<z

and

(b) lim - inf  Be([d(G) + f(2)]) =
AG) <z

(a) By Corollary 11,
Ac([d(G) + f(2))) 2 1~ €/27),

where £ denotes the number, up to isomorphism, of the irreducible G-modules
isomorphic to a complemented factor in a principal series of G. As £ < A(G) <=z
we get that

! il z Og T
dnf AG(d(G) + f(@)) 2 1~ g7y = 1 - 27U)-los),

AMG)<z
Now,
: f( )
lim flx)—logx = hm logaz( -1)
> lim logx( ( ) ~clogloge — 1) =
=00 I

and therefore

lim inf Ag([d(G)+ f@)=1-27>=1.

r—=00 G st

(b) Clearly, lim, o f(x)/logx = oo, so there exists a real number Z such that
[f(z)] > (& + 1) logx for every x > 7.

Let us fix an integer z > T and a group G such that A(G) < x. We consider the
series of G defined in Proposition 17. This series has s nonsoluble factors, and
each of them is a direct product of at most [, nonabelian simple groups. Clearly,
I; < MG) < z. Moreover, by Proposition 17, s <log A(G) + 1 < logz + 1.

Now, let v = [ max{logl;,1}] + 1. As l; < z and we can assume logz > 1,

v < [0 max{logz,1}]+1 < dlogr+1 < (0 +1)logz.
In particular, since x > T, we have [f(z)] > v and, by Lemma 16, it follows that

Ba([d(G) + f(z)]) > 1 — syl @V/v=1,
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Note that, since v < (6 + 1) log z,

[£(x)] [f(z)] flz) -1 f(z)
v 2 (6+1)logz 2 (6+1)logz = (6+1)logz

so that
n[f(z)]/v—l < nf(w)/(6+1)logac—2.

Thus, for a = —logn > 0 and ¢ = (6 + 1)/a, since s < logz + 1 we get

f(x)
Bg([d(G) + f(x)]) 2 1 — (logx + 1) nTFv1es= 2
=1-n"%(logz +1) g~ (rryites)
=1- n—2(2loglogx + 1) —JC-I%K:—;

1

-1 n—Z(Q—%(%—cloglogz) + 2—;%)'

Since this holds for every real number z > T and for every group G such that
MG) < z, we conclude that

lim inf Bg(d(G)+ f(z)) > lim 1— p-2(2~F (Get-clogloga) o=t £

G s.t 00

T—o0

AC) <
=1-77%27°+27®)=1 &
Theorem 1 is a consequence of Theorem 2.

Proof of Theorem 1: Let ¢ be the constant defined in Theorem 2 and let g(x) be
the function defined as g(x) = logzloglogx if z > 4, g(x) = 1 otherwise. Since

i €+ D9(@)

LS P —cloglogz = xll)n;o loglogx = oo,

Theorem 2 implies that

Jim - inf  Pe([d(G) + (c+ 1)g(x)]) = 1.
MG)<z

Thus there exists a positive number z,, such that

dnf - Pe([d(G) + (c +1)g(z)]) > a, for every z > z,.

M) <z

In particular, for any group G such that A(G) > x, we have

Pe([d(G) + (c+ Dg(AMG))]) 2 «,
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and also for any group G such that A(G) < x, we have

P([d(G) + (c+ 1)g(za)]) 2 .
Therefore, for ¢, = (¢ + 1)g(x,) we obtain that

Po(d(G) + (e + DgMNO)) 2 a i AG) > 20,
Pa(ld(C) + cag NG 2 {qud(c‘) e e

since g and P are nondecreasing functions. |

CoROLLARY 18: There is a constant k such that
(1) limz 400 infl G s Ps([d(G) + klogzloglog z]) = 1,
og |G|<z
(2) limg 00 inffaff' P;([d(G) + kloglog|G|logloglog|G|]) = 1.

Proof: (1) Let ¢ be the constant defined in Theorem 2. We set k = c+ 1 and
f(z) = klog zloglog z. Since A(G) < log|G]|, clearly

{G |log|G| <x} C{G | MG) < z}.

Thus
inf Po(ld(G) + f@]) > inf Po(id(G) + (@),
log |1G|<z AMG)<z
and hence by Theorem 2 we conclude that
lim inf  Pe([d(G) + f(@)]) > lim it Pa([d(G) + f(2)]) = 1

r—oo G s.t. L.
log |G| <= AMG)<z

(2) Since {G | log|G| =z} C {G | log|G| < z}, we have

Jim inf Po([d(G) + flog|GI)]) = lim inf Po(d(C) + f())
1Gl=x log |G|=2

> lim  inf Pg([d@)+ f(@))=1. n
T g6l
PROPOSITION 19: Let h(x) be a function defined as h(zx) = loglog x-logloglog
if x > 16, h(z) = 1 otherwise. For any real number 0 < a < 1, there exists a
constant 8, such that P;([d(G) + 0,h(|G|)]) > o for any finite group G.

Proof: This follows the same lines as the proof of Theorem 1, applying
Corollary 18 instead of Theorem 2. 1
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4. Permutation and linear groups

If G is a permutation or a linear group, we are able to bound d,(G) with a
function depending on the degree of G.

If G is a permutation group of degree n, then the length of a maximal chain
in the subgroup lattice of G is at most 3n/2 (see [2]) and this of course implies
A(G) < 3n/2; so from Theorem 2, one can immediately deduce the following
corollary.

COROLLARY 20: There is a constant ¢y such that, if g(z) — oo as x — oo and
f(z) =logz(cy loglogz + g(x)), then
lim  inf )Pg([d(G) +f(m)])=1.

n—o00 G<Sym(n

Also in this case, the previous result does not remain true if we replace
log z(c; log log z+g(x)) by any function f(z) which tends to infinity as x tends to
infinity. As we noticed in the introduction, if n is large enough,
Gn = (Alt(n))™/® can be generated by 2 elements and can be viewed as a
permutation group of degree n - n!/8, but lim,—,~ Pg, ([2+ v/n]) = 0 [5].

If G < Sym(n) and n # 3, then d(G) < n/2 (see [2]); so if 3 is a real number
with 8 > 1/2, then

lim fn - d(G) —¢1 loglogn = oo.
n—oo  logn

Therefore we have the following result.

COROLLARY 21: If 8 > 1/2 then

lim inf Pg([n]) = 1.

n—00 G<Sym(n)

Similar arguments can be applied for completely reducible linear groups.
Namely, if F' is a field which has finite degree over its prime subfield and G
is a finite completely reducible subgroup of GL(n, F), then A(G) < cpn for a
constant ¢g ([7] Theorem C) and d(G) < 3n/2 (see [6]). So we have the following
corollaries.

COROLLARY 22: Let F be a field which has finite degree over its prime
subfield and let X, be the set of the finite completely reducible subgroups
of GL(n, F). There is a constant ¢y such that, if g(z) — oo as * — oo and
f(z) =logz(caloglogx + g(z)), then

Jlim inf Pe([d(G) + fm)]) = 1.
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COROLLARY 23: Let F be a field which has finite degree over its prime subfield
and let X, be the set of the finite completely reducible subgroups of GL(n, F).
If 3> 3/2 then

lim Giéli’n Ps([Bn]) = 1.

n—ro0
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